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Abstract. The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange
interaction under a magnetic field in an arbitrary direction is investigated. Negativity, the measurement of
entanglement, is calculated. We find that for any temperature the evolvement of negativity is symmetric
with respect to magnetic field. The behavior of negativity is presented for four different cases. The results
show that for different temperature, different magnetic field give maximum entanglement. Both the parallel
and antiparallel magnetic field cases are investigated qualitatively (not quantitatively) in detail, we find
that the entanglement may be enhanced under an antiparallel magnetic field.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e. g. EPR paradox, Bells inequalities, GHZ
states, etc.) – 75.10.Jm Quantized spin models – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)
– 03.67.Lx Quantum computation

1 Introduction

It is well-known that quantum entanglement [1–3] plays a
fundamental role in almost all efficient protocols of quan-
tum computation (QC) and quantum information process-
ing [4,5]. In one proposal [6] for physical implementation
of qubits, a well localized nuclear spin coupled with an
electron of a donor atom in silicon plays the role of a
qubit which can be individually initialized, manipulated
and read out by extremely sensitive devices. In another
proposal [7–10], the spin of an electron in a quantum dot
plays the role of a qubit. Long decoherence time and scal-
ability to more than 100 qubits are two of the important
virtues of both the schemes. In both schemes the effec-
tive interaction between the two qubits is governed by an
isotropic Heisenberg Hamiltonian with Zeeman coupling
of the individual spins, namely

H = JS1S2 + γ(S1z + S2z). (1)

At extremely low temperatures such a qubit system may
be assumed to be in its ground state. However a real phys-
ical system is always at a finite temperature and hence in
a mixture of disentangled and entangled states depend-
ing on the temperature. Therefore one is naturally led
to consider the thermal entanglement of such physical
systems. The thermal entanglement has been extensively
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studied for various systems including isotropic [11–14] and
anisotropic [15] Heisenberg chains, Ising model in an ar-
bitrarily directed magnetic field [16], and cavity-QED [17]
since the seminal works by Arnesen et al. [11] and Nielsen
[18]. Based on the method developed in the context of
quantum information, the relaxation of a quantum sys-
tem towards the thermal equilibrium is investigated [19]
and provides us an alternative mechanism to model the
spin systems of the spin- 1

2 case for the approaching of
the thermal entangled states [11–15]. It should be noted
that only the uniform field case is carefully studied in the
above-mentioned papers. The nonuniform case is rarely
taken into account. But in any solid state construction of
qubits, there is always the possibility of inhomogeneous
Zeeman coupling [20,21]. Moreover for perform quantum
computing, it is necessary to control the magnetic field
at each spin separately [22]. So in the theoretical analy-
sis, the nonuniform external magnetic field should be in-
cluded in the model Hamiltonian. Recently, Sun [23] and
Asoudeh [24] investigate the thermal entanglement in the
two-qubit spin model with a nonuniform magnetic field.
But only the spin- 1

2 case is carefully studied in the above
papers. Zhang et al. [25] only consider the uniform mag-
netic field for spin-1 case. In this paper, we will investigate
the thermal entanglement in the two-spin-1 system with
a magnetic field in an arbitrary direction. Thus we may
better understand and make use of entanglement in
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quantum information processing through changing the en-
vironment.

Our paper is arranged as follows: first we will give the
definition of negativity, the measurement of entanglement.
After giving the model Hamiltonian and the solutions, we
will present our calculation results by several figures. Fi-
nally, the discussion and conclusion remarks will be given.

2 The definition of negativity

We first introduce the concept of negativity, which will be
used as the entanglement measure. The Peres-Horodecki
criterion [26] gives a qualitative way for judging if the
state is entangled. The quantitative version of the criterion
was developed by Vidal and Werner [27]. They presented
a measure of entanglement called negativity that can be
computed efficiently, and the negativity does not increase
under local manipulations of the system. The negativity
of a state ρ is defined as

N(ρ) =
∑

i

|µi| , (2)

where µi is the negative eigenvalue of ρT1 , and T1 denotes
the partial transpose with respect to the first system. The
negativity N is related to the trace norm of ρT1 via [27]

N(ρ) =

∣∣∣∣ρT1
∣∣∣∣

1
− 1

2
(3)

where the trace norm of ρT1 is equal to the sum of the
absolute values of the eigenvalues of ρT1 . If N > 0, then
the two-spin state is entangled.

The state of a system at thermal equilibrium can be
described by the density operator ρ(T ) = exp(−βH)/Z,
where Z = Tr[exp(−βH)] is the partition function and
β = 1/kBT (kB is Boltzmann’s constant being set to be
unit kB = 1 hereafter for the sake of simplicity and T is
the temperature). The entanglement in the thermal state
is called thermal entanglement.

3 The model Hamiltonian
and the solutions

The development of laser cooling and trapping provides
us more ways to control the atoms in traps. Indeed, we
can manipulate the atom-atom coupling constants and
the atom number in each lattice well with a very good
accuracy. Our system consists of two wells in the optical
lattice with one spin-1 atom in each well. The lattice may
be formed by three orthogonal laser beam, and we may use
an effective Hamiltonian of the Bose-Hubbard form [28] to
describe the system. The atoms in the Mott regime make
sure that each well contains only one atom. For finite but
small hopping term t, we can expand the Hamiltonian into
powers of t and get [29],

H = ε+ J(S1S2) +K(S1S2)2, (4)

where J = −2t2/U2, K = −2t2/3U2 − 4t2/U0 with t the
hopping matrix elements, and ε = J − K. Us (s = 0, 2)
represents the Hubbard repulsion potential with total spin
s, a potential Us with s = 1 is not allowed due to the
identity of the bosons with one orbital state per well, Since
term ε contains no interaction, we can ignore it in the
following discussions and it would not change the thermal
entanglement. For simplification, J � K is assumed and
the nonlinear couplings is ignored. So the Hamiltonian
equation (4) becomes

H = J(S1S2), (5)

with an nonuniform external magnetic field in an arbitrary
direction, our system is described by

H = J(S1xS2x +S1yS2y)+B cos[θ]S1z +B sin[θ]S2z , (6)

in which the neglected exchange coupling term along the
z-axes is assumed to be much smaller than the coupling in
the (x− y)-plane. Where Sα (α = x, y, z) are the spin op-
erator, J is the strength of Heisenberg interaction and the
magnetic field is assumed to be along the z-axes. When the
total spin for each site Sj = 1 (j = 1, 2), its components
take the form,

Sjx =
1√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠,

Sjy =
1√
2

⎛

⎝
0 −i 0
i 0 −i
0 i 0

⎞

⎠,

Sjz =

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠. (7)

In the following calculation we will select J as the energy
unit and set J = 1.

To evaluate the thermal entanglement we first of all
find the eigenvalues and the corresponding eigenstates of
the Hamiltonian equation (6) which are seen to be

H |ψ1〉 = 0, H |ψ2〉 = −B+|ψ2〉,
H |ψ3〉 = B+|ψ3〉, H |ψ±

4 〉 = −m∓|ψ±
4 〉,

H |ψ±
5 〉 = m±|ψ±

5 〉, H |ψ±
6 〉 = ±ξ|ψ±

6 〉, (8)

where B± = B cos[θ] ± B sin[θ], ξ =
√

2 +B2−, ζ =
√

4 +B2−, m± = (B+ ± ζ)/2.
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ρT1 =
1

Z

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−βB+ 0 0 0 q+ 0 0 0
−1 + cosh[βξ]

ξ2

0 Me−βB+/2 0 0 0 u− 0 0 0
0 0 W− 0 0 0 0 0 0
0 0 0 Q− 0 0 0 u+ 0

q+ 0 0 0 1 + 2

(−1 + cosh[βξ]

ξ2

)
0 0 0 q−

0 u− 0 0 0 MeβB+/2 0 0 0
0 0 0 0 0 0 W+ 0 0
0 0 0 u+ 0 0 0 Q+ 0

−1 + cosh[βξ]

ξ2
0 0 0 q− 0 0 0 eβB+

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

And the corresponding eigenstates are explicitly
given by

|ψ1〉 =
1
ξ
(| − 1, 1〉 +B−|0, 0〉 − |1,−1〉),

|ψ2〉 = | − 1,−1〉,
|ψ3〉 = |1, 1〉,
|ψ±

4 〉 =
1√

1 + S2±
(| − 1, 0〉+ S±|0,−1〉),

|ψ±
5 〉 =

1√
1 + S2±

(|0, 1〉 + S±|1, 0〉),

|ψ±
6 〉 =

1√
1 +R2± + (1 ±B−R±)2

×
[
|−1, 1〉 ±R±|0, 0〉+ (1 ±B−R±)|1,−1

]
. (9)

where R± = ±B− + ξ and S± = (B− ± ζ)/2. Here |x, y〉
(x = 1, 0,−1 and y = 1, 0,−1) are the eigenstates of
S1zS2z. The density operator ρ can be expressed in terms
of the eigenstates and the corresponding eigenvalues as

ρ =
1
Z

∑
exp[−βEl] |Ψl〉 〈Ψl| , (10)

where El is the eigenvalue of the corresponding eigen-
states and the partition function is Z = 1 + 2 cosh[βξ] +
4 cosh[ 12βζ] cosh[ 12βB+] + 2 cosh[βB+].

For our purpose to evaluate the negativity in what
following we need to have a partially transposed density
matrix ρT1 of original density matrix ρ with respect to the
eigenbase of any one spin particle ( say particle 1) which is
found in the basis |x, y〉 (x = 1, 0,−1 and y = 1, 0,−1) as

see equation (11) above

where

M = cosh
[
1
2
βζ

]
− 1
ζ

sinh
[
1
2
βζ

]
B−,

q± = −1
ζ
[e−1/2β(ζ ±B+)(−1 + eβζ)],

u± =
1
ξ2

[±B−(1 − cosh[βξ]) − ξ sinh[βξ]],

W± =
1
ξ2

(1 + cosh[βξ](1 +B2
−) ± ξB− sinh[βξ]),

Q± =
1
2
e

1
2 β(ζ±B+)

(
1 +

B−
ζ

)
+

2e±
1
2β(∓ζ+B+)

4 +B−(B− + ζ)
.

We perform the numerical diagonalization of the density
matrix and the numerical results of the entanglement mea-
sure N is presented. In Figure 1, we give the contour of
negativity for different temperature with respect to B and
θ. From Figure 1, we can see that the evolvement of neg-
ativity is symmetric with respect to magnetic field. The
maximum negativity arrives at the point B = 0 when
T = 0.05 and T = 0.2. With the increasing temperature,
the area of B at which the system can reach maximum
negativity becomes narrower and even arrives zero for a
higher temperature (for example T = 0.6 and T = 1.2).
When the temperature is low, only one peak appears. For
T = 0.6 and T = 1.2, the double peak structure takes
place. We can also find that the evolvement of negativ-
ity is periodic with respect to the polar angle θ and the
double peak structure takes place at θ = (n + 3/4)π,
(n = 0, 1, ...). From these figures, we know that the nega-
tivity gets smaller with the increasing magnetic field am-
plitude. For a higher temperature (say T = 1.2), we can
see that N arrives zero near B = 0. But N increases with
the value of B to a peak value for θ = (n + 3/4)π cases,
after this peak, N will decrease monotonously.

In order to see clearly the change of the negativity,
we give the results for θ = π/4 and θ = 3π/4. This cor-
responds to the parallel and antiparallel magnetic field
case. We give our calculation results in Figure 2 (solid
line for θ = π/4, dotted line for θ = 3π/4), in which the
negativity is plotted in the whole parameter space at a
given temperature, and four typical cases are shown. As
the temperature is low (T = 0.05), we may find that there
are two features. First, there are three sharp peaks (differ-
ent from the spin- 1

2 case for which only one peak appears,
the results for spin- 1

2 case can be seen from reference [23])
and the center of the middle one locates at B = 0, where
the negativity is about 1. As we increase the external field
B, N rapidly decays. When T = 0.6, we can see that the
three peaks evolve into one. That is to say, the left and
the right peak disappear, the middle peak gets shorter as
we increase the temperature. As the temperature is fur-
ther increased, for example T = 1.2, the entanglement is
entirely destroyed.
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Fig. 1. The contour of negativity for different temperature vs. B and θ. The brighter place means the higher negativity.
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Fig. 2. The negativity versus B for different temperature. solid curve for θ = π/4 and dotted curve for θ = 3π/4.
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Compared with the parallel magnetic field case (θ =
π/4), when at the low temperature, for antiparallel mag-
netic field (θ = 3π/4) case, there is no three-peaks struc-
ture emerges and only a peak that monotonously decreases
with the value of B. But the negativity decreases more
slowly than in the parallel case which means that in the
strong field region, the parallel field and the antiparal-
lel field demonstrate obviously different effects on the
entanglement. We can find that in all parameter space, the
negativity of the magnetic field with antiparallel direction
is much larger than that of parallel field. These results
can be seen in these figures. As the temperature increase
(T = 0.6), the feature of N will be changed. The primary
peak at T = 0.05 splits into two peaks. For the parallel
field case, the maximum N appears at B = 0, but for an-
tiparallel field case, at the point N is a minimum point.
The results is the same with the one which can be found
in reference [23]. For T = 0.6, if we apply an antiparallel
field, N will be enhanced more than two times. This again
illuminates the fact that the well-chosen external field can
partially weaken the destructive effect of thermal fluctua-
tion and enhance the entanglement. In other words, for a
certain temperature, a well-chosen external field is help-
ful for entanglement. At a higher temperature (T = 1.2),
we can see that N arrives zero at B = 0 for the both
case. But N increases with the value of B to a peak value
for the antiparallel case, after this peak, N will decrease
monotonously.

4 Conclusions

We investigated qualitatively (not quantitatively) the ef-
fects of a magnetic field in an arbitrary direction on the
thermal entanglement in the two-spin-1 system in terms of
the measure of entanglement called “negativity”. We give
results for different temperatures. We find that the tem-
perature and the magnetic field can affect the feature of
the thermal entanglement significantly. At a certain tem-
perature, the antiparallel magnetic field is helpful for en-
tanglement. In other words, the entanglement may be en-
hanced under an antiparallel magnetic field.
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